I D NO.

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

11 May 2018, Friday

ENDTERM FINAL EXAMINATION MAY 2018

Even Semester 2017-18 Course: MEC 309 Finite Element Methods IV Sem. Mechanical

Instructions:

(i) Read the question properly and answer accordingly.
(ii) Question paper consists of 3 parts.
(iii) Scientific and Non-programmable calculators are permitted

Part A

$$
\text { (2 Q x } 10 \text { M = } 20 \text { Marks) }
$$

1. Explain the following
i) Pascal triangle
ii) Convergence criteria
iii) Compatibility condition.
2. Explain the concept of iso parametric, sub parametric and super parametric elements and their uses.

Part B

(3 Q x $10 \mathrm{M}=30$ Marks)
3. Derive the elemental stiffness matrix, stress and strain of a truss element
4. Derive an equation to show the total potential energy of a beam element.
5. Derive the shape function for a 1D-2noded beam element.

Part C

$$
\text { (2Q x } 15 \mathrm{M}=30 \text { Marks) }
$$

6. Analyze the two member truss shown in Fig.1. Assume EA to be constant for all members. The length of each member is 5 m .

Fig. 1
7. For the beam and loading shown in fig. 2 determine the slopes at 2 and 3 . The vertical deflection at the midpoint of the distributed load.

Fig. 2

ID NO:

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

Weightage: 20\%
Max Marks: 40
Max Time: 1 hr.
TEST - 2
28 March Wednesday 2018
SET A
Even Semester 2017-18 Course: MEC 309 Finite Element Methods VI Sem. Mechanical

Instruction:

(i) Read the question properly and answer accordingly.
(ii) Question paper consists of 3 parts.
(iii) Scientific and Non-programmable calculators are permitted

Part A

(2 Q x 4 M = 8 Marks)

1. List the basic element shapes used in FEM with neat sketch.
2. Explain node numbering scheme with an example.

Part B

(2 Q x $10 \mathrm{M}=20$ Marks)
3. Derive the linear interpolation polynomial for a basic 1D bar element in terms of global coordinates.
4. For a bar shown in fig. 1 using penalty method find nodal displacements and reaction at the support. $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.

$\mathrm{P}=60 \mathrm{KN}$
$A=250 \mathrm{Sqmm}$
Fig. 1

Part C

5. A tapered bar of unit thickness shown in fig. 2 is subjected to a point load. Accounting to the body force, the weight density $\mathrm{f}=46.6 \times 10^{-6} \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{E}=200 \mathrm{GPa} \& \mathrm{P}=1000 \mathrm{~N}$
i) Model the plate into 2 bar elements.
ii) Determine the elemental \& global stiffness matrix
iii) Determine the global force vector
iv) Using elimination method find the nodal displacement
v) Find the reactions at the supports
vi) Find the stresses in each element.

Fig. 2

ID NO:

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

Instruction:

(i) Read the question properly and answer accordingly.
(ii) Question paper consists of 3 parts.
(iii) Scientific and Non-programmable calculators are permitted

Part A

(1 Q x 8 M = 8 Marks)

1. Briefly explain the basic steps involved in FEM.

Part B

(2 Q x $10 \mathrm{M}=20$ Marks)
2. For the spring system shown figure-1 below find Global stiffness matrix and displacements, given $K_{1}=100 \mathrm{~N} / \mathrm{mm}, \mathrm{K}_{2}=200 \mathrm{~N} / \mathrm{mm}, \mathrm{K}_{3}=-100 \mathrm{~N} / \mathrm{mm}, \mathrm{P}=500 \mathrm{~N}$

Fig. 1
3. Determine the values of $X_{1}, X_{2} \& X_{3}$ using Gauss elimination method.
$10 X_{1}+7 X_{2}+5 X_{3}=-5$
$6 X_{1}+4 X_{2}-2 X_{3}=-4$
$5 X_{1}-2 X_{2}+4 X_{3}=3$

Part C

(1Q x $12 \mathrm{M}=12$ Marks)
4. For a bar shown in figure -2. Determine the displacement at the loading point using RR method. Assume $2^{\text {nd }}$ order polynomial for the displacement model.

Fig. 2

