

ID NO.

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

Weightage: 40 % Max Marks: 80 Max Time: 2 hrs. 11 May 2018, Friday

ENDTERM FINAL EXAMINATION MAY 2018

Even Semester 2017-18 Course: MEC 309 Finite Element Methods IV Sem. Mechanical

Instructions:

- (i) Read the question properly and answer accordingly.
- (ii) Question paper consists of 3 parts.
- (iii) Scientific and Non-programmable calculators are permitted

Part A

(2 Q x 10 M = 20 Marks)

- 1. Explain the following
 - i) Pascal triangle ii) Convergence criteria iii) Compatibility condition.
- 2. Explain the concept of iso parametric, sub parametric and super parametric elements and their uses.

Part B

(3 Q x 10 M = 30 Marks)

- 3. Derive the elemental stiffness matrix, stress and strain of a truss element
- 4. Derive an equation to show the total potential energy of a beam element.
- 5. Derive the shape function for a 1D 2noded beam element.

 $(2Q \times 15 M = 30 Marks)$

6. Analyze the two member truss shown in Fig.1. Assume EA to be constant for all members. The length of each member is 5m.

Fig. 1

7. For the beam and loading shown in fig. 2 determine the slopes at 2 and 3. The vertical deflection at the midpoint of the distributed load.

Fig. 2

ID NO:

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

Weightage: 20%

Max Marks: 40

Max Time: 1 hr.

28 March Wednesday 2018

TEST - 2

SET A

Even Semester 2017-18

Course: MEC 309 Finite Element Methods

VI Sem. Mechanical

Instruction:

(i) Read the question properly and answer accordingly.

(ii) Question paper consists of 3 parts.

(iii) Scientific and Non-programmable calculators are permitted

Part A

(2 Q x 4 M = 8 Marks)

1. List the basic element shapes used in FEM with neat sketch.

2. Explain node numbering scheme with an example.

Part B

(2 Q x 10 M = 20 Marks)

- 3. Derive the linear interpolation polynomial for a basic 1D bar element in terms of global coordinates.
- 4. For a bar shown in fig. 1 using penalty method find nodal displacements and reaction at the support. $E = 2 \times 10^5 \text{ N/mm}^2$.

Fig. 1

- 5. A tapered bar of unit thickness shown in fig. 2 is subjected to a point load. Accounting to the body force, the weight density $f = 46.6 \times 10^{-6} \text{ N/}mm^2$, E = 200 GPa & P = 1000 N
 - i) Model the plate into 2 bar elements.
 - ii) Determine the elemental & global stiffness matrix
 - iii) Determine the global force vector
 - iv) Using elimination method find the nodal displacement
 - v) Find the reactions at the supports
 - vi) Find the stresses in each element.

Fig. 2

ID NO:

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

Weightage: 20 % Max Marks: 40 Max Time: 1 hr. 20 Feb Tuesday 2018

TEST - 1

Even Semester 2017-18 Course: MEC 309 Finite Element Method VI Sem. Mechanical

Instruction:

- (i) Read the question properly and answer accordingly.
- (ii) Question paper consists of 3 parts.
- (iii) Scientific and Non-programmable calculators are permitted

Part A

(1 Q x 8 M = 8 Marks)

1. Briefly explain the basic steps involved in FEM.

Part B

(2 Q x 10 M = 20 Marks)

2. For the spring system shown figure-1 below find Global stiffness matrix and displacements, given $K_1=100N/mm$, $K_2=200N/mm$, $K_3=-100N/mm$, P=500N

Fig.1

3. Determine the values of X₁, X₂ & X₃ using Gauss elimination method.

$$10X_1 + 7X_2 + 5X_3 = -5$$

 $6X_1 + 4X_2 - 2X_3 = -4$
 $5X_1 - 2X_2 + 4X_3 = 3$

Part C

 $(1Q \times 12 M = 12 Marks)$

4. For a bar shown in figure -2. Determine the displacement at the loading point using RR method. Assume 2nd order polynomial for the displacement model.

Fig. 2