## SCHOOL OF INFORMATION SCIENCE MID TERM EXAMINATION - DEC 2023

Semester: Semester I-2023
Date : 26-DEC-2023
Course Code : MAT3001
Course Name : Sem I - MAT3001 - Mathematical Foundation of Computer
Application
Program : MCA

Time : 10:00AM 11:30AM

Max Marks : 50
Weightage : 25\%

## Instructions:

(i) Read all questions carefully and answer accordingly.
(ii) Question paper consists of 3 parts.
(iii) Scientific and non-programmable calculator are permitted.
(iv) Do not write any information on the question paper other than Roll Number.

## PART A

## ANSWER ALL THE QUESTIONS

1. Write the truth value of disjunction of the statements "The earth is flat" and " $3+5=8$ ".
(CO1) [Knowledge]
2. Let $p$ be the statement "You can take the flight," and let $q$ be the statement "You buy a ticket." Express $p \leftrightarrow q$ as a statement in English.
(CO1) [Knowledge]
3. What are the contrapositive, and the inverse of the conditional statement "The home team wins whenever it is raining?"
(CO1) [Knowledge]
4. Write the following statements in symbolic form
(a) Some integers are divisible by 5 and (b) No real numbers is greater than its square.
(CO1) [Knowledge]
5. Define partially ordered set with an example.
(CO2) [Knowledge]

## PART B

## ANSWER ALL THE QUESTIONS

6. Show that $(p \rightarrow q) \vee(\sim p \rightarrow r)$ is a tautology using truth table.
7. Show that $(p \leftrightarrow q) \Leftrightarrow \sim(p \vee q) \vee(p \wedge q)$ without using truth table.
(CO1) [Comprehension]
8. Show that $(\forall x)(p(x) \rightarrow q(x)) \wedge(\forall x)(q(x) \rightarrow r(x)) \Rightarrow)(\forall x)(p(x) \rightarrow r(x))$
(CO1) [Comprehension]
9. Show that the divisibility relation " / " is a partial ordering on the set of positive integers.
(CO2) [Comprehension]

## PART C

## ANSWER THE FOLLOWING QUESTION

( $1 \times 20=20 \mathrm{M})$
10. (a) Obtain the disjunctive normal form and conjunctive normal form of $\sim(p \vee q) \leftrightarrow p \wedge q$ without using truth table.
(b) Test the validity of the following arguments:

1. If milk is black then every cow is white.
2. If every cow is white then it has 4 legs.
3. If every cow has 4 legs then every Buffalo is white and brisk.
4. The milk is black.
5. So, every Buffalo is white .
(CO1) [Application]
