School of Engineering

I Semester 2015-2016

COMPREHENSIVE EXAMINATION

Course: MATH A 101 Engineering Mathematics I

(Closed Book)

Max Marks:60

Max Time: 2 hours

Weightage: 30 %

11th Jan' 2016

SET A

Instructions to Candidates

- 1. Write legibly.
- 2. Attempt all questions.
- 3. Assume any missing data suitably and clearly state and justify the same

PART A (10 X 3 = 30 Marks)

1. Find
$$\frac{\partial^2 u}{\partial x \partial y}$$
 if $u(x,y) = \log \left(\frac{x^2 + y^2}{xy} \right)$.

2. If
$$u = \log[\frac{x^2 + y^2}{x + y}]$$
, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 1$.

3. Expand
$$xy^2 + 2x - 3y$$
 in powers of $(x+2)$ and $(y-1)$ up to second degree terms.

4. If
$$u + v + w = x$$
; $v + w = xy$; $w = xyz$ then find $\frac{\partial(u, v, w)}{(x, y, z)}$.

5. Using Cayley-Hamilton theorem find the inverse of
$$A = \begin{bmatrix} 7 & 3 \\ 2 & 6 \end{bmatrix}$$
.

6. Find the rank of the matrix
$$\begin{bmatrix} 1 & -2 & 0 & 1 \\ 2 & -1 & 1 & 0 \\ 3 & -3 & 1 & 1 \\ -1 & -1 & -1 & 1 \end{bmatrix}$$

7. Evaluate
$$\int_{1}^{2} \int_{1}^{x} xy^{2} dy dx$$
.

8. By changing into polar co-ordinates and evaluate
$$\iint (x^2 + y^2) dydx$$
 over the circle $x^2 + y^2 = a^2$.

- 9. Find the angle between the normals to the surface $xy^3z^2=4$ at the points (-1,-1,2) and (4,1,-1).
- 10. Prove that the vector $\vec{F} = (Y^2 Z^2 + 3YZ 2X)\hat{\imath} + (3xz+2xy)\hat{\jmath} + (3yx-2xz+2z)\hat{k}$ is both solenoidal and irrational.

PART B (6 x 5 = 30 Marks)

11. If
$$y = (\sin^{-1} x)^2$$
, then prove that $(1 - x^2)y_{n+2} - (2n+1)xy_{n+1} - n^2y_n = 0$.

- 12. Find the minimum value of $x^2 + y^2 + z^2$ subject to the condition $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$
- 13. Using Gauss-Jordan method solve the system of linear equations

$$2x + y + z = 10$$
, $3x + 2y + 3z = 18$, $x + 4y + 9z = 16$.

- 14. Change the order of integration in $\int\limits_{x=0}^{2}\int\limits_{y=x^2/4}^{3-x}xy\ dy\ dx$ and hence evaluate it.
- 15. Find the area enclosed between the parabola $y = x^2$ and the straight line y = x.
- 16. State Green's theorem and evaluate $\int_{c}^{c} (xy+y^2)dx+x^2dy$, where C is the closed curve of the region bounded by y=x and $y=x^2$.

School of Engineering

I Semester 2015-2016

COMPREHENSIVE EXAMINATION

Course: MATH A 101 Engineering Mathematics I

(Closed Book)

Max Marks:60

Max Time: 2 hours

Weightage: 30 %

11th Jan' 2016

SET B

Instructions to Candidates

- 1. Write legibly.
- 2. Attempt all questions.
- 3. Assume any missing data suitably and clearly state and justify the same

PART A (10 X 3 = 30 Marks)

1. Find the nth derivative of $e^x \sin^2 x$.

2. If
$$u = \tan^{-1} \left(\frac{x^3 + y^3}{x + y} \right)$$
, then find $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$.

3. Expand
$$\frac{x}{e^x - 1}$$
 up to x^4 .

4. If
$$u=2xy$$
, $v=x^2-y^2$ and $x=r\cos\theta$, $y=r\sin\theta$, evaluate $\frac{\partial(u,v)}{\partial(r,\theta)}$.

5. If
$$A = \begin{bmatrix} -1 & 2 \\ 2 & -1 \end{bmatrix}$$
, find A^{-1} using Cayley-Hamilton Theorem.

6. Let V denote the vector space of all real-valued functions that are integrable over the interval

[0,1]. Consider the transformation
$$T:V\to R$$
, where $T(f)=\int\limits_0^1f(x)\,dx$ for every $f\in V$.

Show that T is a linear transformation.

7. Evaluate
$$\int_{0}^{a} \int_{0}^{b} \int_{0}^{c} (x^2 + y^2 + z^2) dx dy dz$$
.

- 8. Evaluate $\iint xy \, dx \, dy$ over the first quadrant of the circle $x^2 + y^2 = a^2$.
- 9. If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, then evaluate $div\left(\frac{\vec{r}}{r^3}\right)$.
- 10. Given $\phi = 2x^3y^2z^4$, find $div \operatorname{grad} \phi$.

PART B (6 X 5 = 30 Marks)

- 11. If $y = \sin\left(m\sin^{-1}x\right)$, prove that $\left(1-x^2\right)y_2 xy_1 + m^2y = 0$ and hence by Leibnitz's theorem deduce that $\left(1-x^2\right)y_{n+2} \left(2n+1\right)xy_{n+1} + \left(m^2-n^2\right)y_n = 0$.
- 12. The temperature u(x, y, z) at any point in space is $u = 400 \, xyz^2$. Using Lagrange's multiplier method find the highest temperature on the surface of the sphere $x^2 + y^2 + z^2 = 1$.
- 13. Solve the system of linear equations 10x + y + z = 12, 2x + 10y + z = 13, x + y + 5z = 7 by Gauss-Jordan method.
- 14. Change the order of integration in $\int\limits_{x=0}^{a}\int\limits_{y=x^2/a}^{2a-x}xy\ dy\ dx$ and then evaluate it.
- 15. Find the area enclosed by the curves $y^2 = 4ax$ and $x^2 = 4ay$.
- 16. State Green's theorem and hence evaluate $\int_C x^2 dx + xy \, dy$ where C is the curve in the xy plane given by x=0, y=0, x=a, y=a (a>0).

School of Engineering

I Semester 2015-2016

COMPREHENSIVE EXAMINATION

Course: MATH A 101 Engineering Mathematics I

(Open Book)

Max Marks:20

Max Time: 1 hour

Weightage: 10 %

11th Jan' 2016

SET A

Instructions to Candidates

- 1. Write legibly.
- 2. Attempt all questions.
- Use of text book permitted
- 4. Assume any missing data suitably and clearly state and justify the same

2 x 10 = 20 Marks

1. Find the eigen values and eigen vectors of the matrix $\begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$

2. You might have seen dish antenna and bring the shape of the dish antenna in your answer as per the details given below. It is required to build a parabolic satellite dish, whose shape will be formed by rotating a parabolic curve $y^2 - ax^2$ about y-axis. If the dish is to have a diameter of 10 feet and a maximum depth of 2 feet, find the value of "a" and the surface area of the dish. (Hint: draw the figure as per specifications and identify the radius, value of "a" and express the given equation in terms of x, find the derivative of x with respect to y and use the maximum depth to find

"a" and then apply integration technique, apply the formula, $2\pi \int x + \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dy$ with appropriate limits.

School of Engineering

I Semester 2015-2016

COMPREHENSIVE EXAMINATION

Course: MATH A 101 Engineering Mathematics I

(Open Book)

Max Marks:20

Max Time: 1 hour

Weightage: 10 %

11th Jan' 2016

SET B

Instructions to Candidates

- 1. Write legibly.
- 2. Attempt all questions.
- 3. Use of text book permitted
- 4. Assume any missing data suitably and clearly state and justify the same

2 x 10 = 20 Marks

- 1. Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 2 & 2 \\ -1 & 1 & 3 \end{bmatrix}$.
- 2. a) Suppose that we have a fixed number of atoms or molecules of an ideal gas in a container that has a volume that can change with time, such as a balloon. The ideal gas law is PV = kT where k is determined by the number of atoms or molecules of the ideal gas. (Let k = 8 N.m/K). If the temperature is held constant at 320 K, what is the instantaneous rate of change of the pressure if the volume is 2 m^3
- b) Resistors of resistances R_1 , R_2 , R_3, R_n Ohms can be placed in parallel in a circuit to produce a resistor element with a new resistance R_{new} Ohms. And $R_{new} = (R_1^{-1} + R_2^{-1} + + R_n^{-1})^{-1}$. What is the instantaneous rate of change of the resistance in the new resistor element, with respect to one of the resistances R, while holding the other resistances constant? (5)

	ID No.:													
	Section N	0.:		Si	gnatu	re of In	nvigilato	or:						
			Pı	eside	ency	Univ	versit	у, В	engal	luru				
				S	choo	ol of	Engi	neeri	ng					
I Sem	ester 2015-	2016		Quiz	Z		Course	: MA	ГН А 1	101 En	gineer	ing M	athemat	ics I
												((Closed Be	ook)
Max I	Marks: 20	Ma	x Time	: 30 Mi	n	Weig	htage:	10%	17th	Dec' 2	015		Set A	
	Instruction 1. Write 2. Do no 3. Answer 4. Enter	legibly t overv	y using write. ne quest	pen onl	er itse					answe	r book	provi	ded.	
1. Sta	1 = 20 Mar te true or fa	ılse: 4 ^t	h deriva						6	4:				we in his
2. is	Denniu	OII	Ol	а		попис	geneou	18	func	tion	of		two	variables
engag a) Tot		on	b) Par	tial der	ivation	n c)								bles, we are
5. If :	$x = r \cos \theta$	9, y=	r sin	heta , ther	$\frac{\partial \theta}{\partial x}$	equals	5							
(a) si	$\frac{\sin \theta}{r}$	(b	$r = \frac{\cos \theta}{r}$	9		(c) —	$\frac{\sin \theta}{r}$		(d)	$\frac{\tan \theta}{r}$				
6. If	u(x,y)	is	a hon	nogeneo	ous f	unction	n of	degree	n,	then	the v	value	of the	expression
$x^2 = \frac{6}{6}$	$\frac{\partial^2 u}{\partial x^2} + 2xy$	$\frac{\partial^2 u}{\partial x \partial y}$	$\frac{y}{y} + y^2$	$\frac{\partial^2 u}{\partial y^2}$	is									
(a) n	(n+1)u		(b) n	(n-1)	u	(0	c) nu		(d)	(n-1)) <i>u</i>			

function.

7. A function U(x,y) satisfies the Laplace equation, then U is said to be_

optima $(x, y, z) = 0 \text{ are three}$ $\frac{\partial (f_1, f_2, f_3)}{\partial (u, v, w)}$ $\frac{\partial (f_1, f_2, f_3)}{\partial (x, y, z)}$
and skew-symmetric
A is 1.
and skev

I Semester 2015-2016

Quiz

Course: MATH A 101 Engineering Mathematics I

(Closed Book)

Max Marks: 20

Max Time: 30 Min

Weightage: 10%

17th Dec' 2015

Set B

Instructions to Candidates

- 1. Write legibly using pen only.
- 2. Do not overwrite.
- Answer in the question paper itself, there will be no separate answer book provided.
- 4. Enter your ID No. and Section No. in the designated place

$20 \times 1 = 20 \text{ Marks}$

1. State true or false: For
$$u = u(x, y, z)$$
, $\frac{\partial^3 u}{\partial x \partial y \partial z} = \frac{\partial^3 u}{\partial z \partial y \partial x}$

2. If
$$\phi = y / x$$
, $x \frac{\partial \phi}{\partial x} + y \frac{\partial \phi}{\partial y} = ?$

3. If $y = 3w^4 - w^2x + x^2z - z^3$ then the partial derivative of y with respect to w is: a) - $w^2 + 2xz$ b) $12w^3 - w^2x + 2xz$ c) $3w^3 - wx$ d) $12w^3 - 2wx$

a) -
$$w^2 + 2xz$$
 b) $12w^3 -$

c)
$$3w^3 - wx$$

d)
$$12w^3 - 2wx$$

4. If
$$y = \frac{1}{ax+b}$$
, then y_n equals

(a)
$$\frac{(-1)^n (n!) a^n}{(ax+b)^{n+1}}$$
 (b) $\frac{(-1)^{n-1} (n!) a^n}{(ax+b)^n}$ (c) $\frac{(-1)^n (n-1)! a^n}{(ax+b)^n}$ (d) $\frac{(-1)^{n-1} (n-1)! a^n}{(ax+b)^{n+1}}$

5. If
$$u = \frac{x^2 + y^2}{\sqrt{x} + \sqrt{y}}$$
, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ equals (a) $2u$ (b) $\frac{1}{2}u$ (c) $3u$ (d) $\frac{3}{2}u$

6. The asymptote of the curve $x^2y^2 - xy^2 + x + y + 1 = 0$ parallel to the x-axis is

(a)
$$y = 1$$

(b)
$$y = 0$$

(c)
$$y = -1$$

(d)
$$x = y$$

7. Expansion of cos(x) in Mclaurin's series up to 3rd degree terms is:.....

8. When
$$rt - s^2 > 0$$
, $r < 0$, the function is

- 9. State True or False: The expansion of $\sin x$ in powers of x is $x \frac{x^3}{3!} + \frac{x^5}{5!} \frac{x^7}{7!} + ----$
- 10. The Jacobian $\frac{\partial(u,v)}{\partial(x,v)}$ for the functions $u=e^x \sin y$ and $v=x+\log\sin y$ is
- (a) 1

- (b) 0 (c) $\frac{e^x}{x}$ (d) $e^x \sin x \cos y$
- 11. Eigen values of $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ are......
- 12. When do we say a system of equations inconsistent?
- 13. Say true or false: Eigen vector of a matrix can be a zero vector

14. If
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$$
, $A^{-1} = ?$

- 15. Trace of the matrix is
- 16. State True or False: $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ is an orthogonal matrix
- 17. Let u and v are functions of two variables and their Jacobian is zero the u and v are said to be _
- 18. Given that AX= b represents a system of simultaneous linear equations and the determinant of the matrix A is zero then the given system has number of solution(s).
- 19. The rank of the matrix $\begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & -1 & -2 \end{vmatrix}$ is (a) 3 (b) 2 (c) 1 (d) 0
- 20. The nullity of the matrix $\begin{vmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & -2 & 0 & 3 \\ 0 & 0 & 0 & 1 & -5 \end{vmatrix}$ is (a) 4 (b) 3 (c) 2 (d) 1

For official use (students shall not write beyond this line)

Marks scored out of 20

ID No.:											
Section No.		Sign	ature of	Invigilato	or:						
]	Preside	ncy U	nivers	ity, B	eng	aluru	ı			
				of Eng							
I Semester 2015-	2016	Quiz					101 F	ngineer	ring Math	nematic	e I
		Z		Cour	JC. 1741		LIVII	ingineer		sed Boo	
Max Marks: 20	Max Tin	ne: 30 Min	W	eightage/	: 10%	17	th Dec'	2015	Set		,
Instructions to Ca	andidates										
Write legibly is		nlv.									
2. Do not overwr											
3. Answer in the	question pa	per itself,	there wil	ll be no se	eparate	answe	er book	provide	ed.		
4. Enter your ID											
20 x 1 =	20 Marks										
1. Fill in blanks:	nth deriva	ative of 1/	(x+1) is.								
2. Differentiation	n refers to	the proc	ess whe	ereby we	e:				•		
a) Calcu	ate the int	tercept of	a curve	with th	e verti	cal ax	is				
	ate the ar										
c) Calcul	ate the gra	adient to	a curve	at any p	oint on	the o	curve				
d) Calcu	d) Calculate the intercept of a curve with the horizontal axis										
3. The nth deriv	ative of sir	n(ax+b) =									
4. State true or	alse: Lapla	ace equat	ion in tv	wo dime	nsions	is u_{x}	$x + u_y$	y = 0			
5. State true or	alse: The	function	$u=e^{x/y}$	$v \sin(x/x)$	y) is no	ot a h	omog	eneous	function		
6. If $f(x, y) = c$	is an imp	licit funct	ion, the	$\frac{dy}{dx}$ eq	quals (a	a) $\frac{f_x}{f}$	(b)	$\frac{-f_y}{f}$	(c) $\frac{-1}{4}$	$\frac{f_x}{f_x}$	(d) $\frac{f_y}{f}$

7. If u = x + y, v = xy, what is $\frac{\partial(u, v)}{\partial(x, y)}$?

- 8. At a maximum turning point:
 - a) first derivative = 0 and second derivative is +ve
 - b) first derivative = -ve and second derivative is +ve
 - c) first derivative = 0 and second derivative is -ve
 - d) first derivative = +ve and second derivative is +ve
- 9. State true or false: The expansion of $\log(1+x)$ in powers of x is $1-x+\frac{x^2}{2}-\frac{x^3}{3}+\frac{x^4}{4}+\cdots$
- 10. If $f(x, y) = 1 + x^2y^2$, then the stationary point of the function f(x, y) is

 - (a) (0, 0) (b) (1, 0)
- (c) (0, 1)

- 11. State Cayley-Hamilton's theorem
- 12. Rank of $\begin{vmatrix} 1 & 2 & 4 \\ -1 & 2 & -4 \\ 0 & 0 & 0 \end{vmatrix}$ is......
- 13. Say true or false: Set of all polynomials of degree 4 is a vector space
- 14. Relationship between the product of all eigen values and the determinant of the matrix
- 15. Write a formula for the characteristic polynomial of a 2X2 matrix is
- 16. State True or False: If λ is an eigen value of a matrix, then $\frac{1}{\lambda}$ is an eigen value of the matrix A^{-1}
- 17. If A = $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ then inverse of A is _____
- 18. State true or false: Any complex square matrix can be expressed as the sum of a Hermitian matrix and a skew-Hermitian matrix
- 19. The eigen values of the matrix $\begin{vmatrix} 2 & 5 & 13 \\ 0 & 3 & 9 \\ 0 & 0 & 4 \end{vmatrix}$ are
- 20. State true or false: The mapping $T: R \to R$, $T(x) = x^3$ is a linear transformation

Course: MATH A 101 Engineering Mathematics I I Semester 2015-2016 Test 1 (Closed Book)

Weightage: 15 % 19 October 2015 Max Time: 50 Min Max Marks: 30 Set A

Instructions to Candidates

- 1. Write legibly
- 2. Attempt all questions serially, in order of question paper
- 3. Assume suitable data wherever necessary and justify the same.

Part A $(5 \times 1 = 5 \text{ Marks})$

- 1. Find the nth derivative of $(a x + b)^n$
- 2. Find the derivative of tan(5 sinx)
- 3. Choose the correct option: According to Euler's theorem,

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} =$$

- (c) n(n-1)u (d) n(n+1)u
- 4. State TRUE or FALSE: z = f(x,y) represents a curve in 2D space
- 5. If u = f(2x 3y, 3y 4z, 4z 2x), find u_x .

Part B $(5 \times 2 = 10 \text{ Marks})$

6. Evaluate
$$\frac{d}{dx} \left(\frac{x+y}{x^2+y^2} \right)$$

7. If
$$x = r \cos\theta$$
, $y = r \sin\theta$, find $\frac{\partial r}{\partial x}$ and $\frac{\partial x}{\partial r}$.

8. If
$$u = f(x + ct) - g(x - ct)$$
 then prove that $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$

9. If
$$y = x \sin x$$
, find y_n

10. If
$$u = \sin^{-1}(\frac{\sqrt{x} - \sqrt{y}}{\sqrt{x} + \sqrt{y}})$$
, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 0$

Part C $(3 \times 5 = 15 \text{ Marks})$

11. If
$$u = e^{xyz}$$
, find $\frac{\partial^3 u}{\partial x \partial y \partial z}$.

13. If
$$\cos^{-1}(\frac{y}{b}) = n\log(\frac{x}{n})$$
 then prove that $x^2y_{n+2} + (2n+1)xy_{n+1} + n^2y_n = 0$

I Semester 2015-2016 Test 1 Course: MATH A 101 Engineering Mathematics I (Closed Book)

Max Marks: 30 Max Time: 50 Min Weightage: 15 % 19 October 2015 Set B

Instructions to Candidates

- 1. Write legibly
- 2. Attempt all questions serially, in order of question paper
- 3. Assume suitable data wherever necessary and justify the same.

Part A $(5 \times 1 = 5 \text{ Marks})$

- 1. State TRUE or FALSE: nth derivative of $(x+1)^{n-1}$ is 0
- 2. Choose the correct option: Euler's theorem is applicable only for
- (a) Non-homogeneous functions (b) Homogeneous functions (c) both (d) neither
- 3. State Leibnitz's theorem.

4. If
$$u = f\left(\frac{x}{y}\right)$$
, find $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$.

5. Find
$$\frac{\partial z}{\partial x}$$
 and $\frac{\partial z}{\partial y}$ if $z = x^y$

Part B $(5 \times 2 = 10 \text{ Marks})$

6. Verify
$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x}$$
 for $z = \sqrt{x + y^2}$

7. If
$$u = (1 - 2xy + y^2)^{-\frac{1}{2}}$$
 prove that $x \frac{\partial u}{\partial x} - y \frac{\partial u}{\partial y} = y^2 u^3$

8. Find the total derivative of u with respect to t, where $u = y^2$ - 4ax and $x = at^2$; y = 2at

9. If
$$x = r \cos\theta$$
, $y = r \sin\theta$, find $\frac{\partial^2 \theta}{\partial x^2} + \frac{\partial^2 \theta}{\partial y^2}$.

10. Find the nth derivative of $\cos x \cos 2x$.

Part C $(3 \times 5 = 15 \text{ Marks})$

11. State and prove extension Euler's theorem

12. If
$$\frac{1}{u^2} = x^2 + y^2 + z^2$$
 then prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$

13. If
$$y = e^{a \sin^{-1} x}$$
, prove that $(1 - x^2) y_{n+2} - (2n+1)xy_{n+1} - (n^2 + a^2)y_n = 0$.

I Semester 2015-2016

Test 1

Course: MATH A 101 Engineering Mathematics I

Makeup

(Closed Book)

Max Marks: 30 Max Time: 50 Min

Weightage: 15 % 27th Nov' 2015

Instructions to Candidates

- 1. Write legibly
- 2. Attempt all questions serially, in order of question paper
- 3. Assume suitable data wherever necessary and justify the same.

Part A $(5 \times 1 = 5 \text{ Marks})$

- 1. Write the Laplace equation.
- 2. Define harmonic function.
- 3. Find the derivative of sec(5-4x)
- 4. Find the derivative of cosec(3-kx)
- 5. Find the nth derivative of (ax + b)⁻¹

Part B (5 \times 2 = 10 Marks)

- 6. Verify Laplace equation for the function $z = -x^2 + y^2$
- 7. Verify Euler's theorem for the function $u = (8x^3 + y^2) (\log x \log y)$
- 8. Find the nth derivative of $1/(x^2 a^2)$

9. Verify
$$\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$$
, where $u = x^2 y + y^2 x$

10. Compute
$$\frac{\partial^2 u}{\partial \theta^2}$$
 for u(x,y) where x = r cos θ ; y = r sin θ

Part C $(3 \times 5 = 15 \text{ Marks})$

- 11. State and Prove Euler's theorem for homogenous functions.
- 12. If $y = \sin(m \sin^{-1}x)$ then prove that $(1-x^2)y_{x+2} (2n+1)y_{n+1} + (m^2 + n^2)y_n = 0$

13. If
$$u = \frac{x+y+z}{\sqrt{x}+\sqrt{y}+\sqrt{z}}$$
 then compute $x\frac{\delta u}{\delta x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z}$

I Semester 2015-2016

Test 2

Course: MATH A 101 Engineering Mathematics I

(Closed Book)

Max Marks: 30 Max Time: 50 Min

Weightage: 15 % 14th Dec' 2015

Set C

Instructions to Candidates

1. Write legibly

2. Assume suitable data wherever necessary and justify the same.

PART A $(5 \times 1 = 5 \text{ Marks})$

- 1. Say true or false: $(AB)^T = A^T B^T$.
- 2. Define orthogonal matrix.
- 3. State the condition (using rank) to be satisfied when the non-homogeneous system AX = B has a unique solution.
- 4. The trace of a square matrix A is equal to the: (a) Sum of eigen values (b) Spectral radius (c) Product of eigen values (d) Mean of eigen values
- 5. In case a function f(x, y) is found to have $f_x = 0$ and $f_y = 0$ at a point and $rt s^2$ is found to be less than zero at that point (where $r = f_{xx}$, $s = f_{xy}$ and $t = f_{yy}$), then the point is _____

PART B ($5 \times 2 = 10 \text{ Marks}$)

- 6. What is the maximum area of a rectangle whose perimeter is 20 cm?
- 7. Find the rank and nullity of $\begin{bmatrix} 1 & -2 & 3 & 9 \\ -1 & 3 & 0 & -4 \\ 2 & -5 & 5 & 17 \end{bmatrix}$.
- 8. Write the series of log(1 + x)
- 9. Find the Jacobian of $u = a \cosh x \cos y$ and $v = a \sinh x \sin y$
- 10. Find the inverse of $\begin{bmatrix} 1 & 2 \\ 5 & 7 \end{bmatrix}$.

PART C $(3 \times 5 = 15 \text{ Marks})$

11. Test the consistency and solve the system of linear equations

$$x_1 + 2x_2 - 3x_3 = 1$$
, $2x_1 + x_2 + 4x_3 = 2$ and $3x_1 + 3x_2 + 4x_3 = 1$

- 12. Find the minimum value of the function $x^2 + y^2 + xy + ax + by$.
- 13. A manufacturer can produce three different products in quantities p,q and r respectively and thereby derive a profit f(p,q,r) = 2p+8q+24r. Find the value of p,q and r that maximize the profit of production subject to the constraint $p^2 + 2q^2 + 4r^2 = 4,500,000,000$.

I Semester 2015-2016

Test 2

Course: MATH A 101 Engineering Mathematics I

(Closed Book)

Max Marks: 30 Max Time: 50 Min

Weightage: 15 % 14th Dec' 2015

Set A

Instructions to Candidates

1. Write legibly

2. Assume suitable data wherever necessary and justify the same.

PART A $(5 \times 1 = 5 \text{ Marks})$

- 1. Say true or false: Taylor's series is used to approximate functions.
- 2. What are the Eigen values of a diagonal matrix?
- 3. Define the rank of a matrix.
- 4. Define unitary matrix.
- 5. Write down Taylor series expansion for two variables.

PART B $(5 \times 2 = 10 \text{ Marks})$

- 6. Expand $\tan^{-1} x$ in powers of (x-1).
- 7. Find Eigen values of $A = \begin{bmatrix} 4 & 1 & 1 \\ 1 & 4 & 1 \\ 1 & 1 & 4 \end{bmatrix}$.
- 8. If λ is an Eigen value of a square matrix A then prove that $1/\lambda$ is an Eigen value of A^{-1} .
- 9. Find the characteristic polynomial of the matrix $A = \begin{bmatrix} 2 & 2 & -1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$
- 10. Find the inverse of $\begin{bmatrix} 1 & 2 \\ 5 & 7 \end{bmatrix}$.

PART C $(3 \times 5 = 15 \text{ Marks})$

- 11. Find the extreme value of the function $x^m y^n z^p$ when x + y + z = a
- 12. Find the minimum value of the function $x^2 + y^2 + xy + ax + by$.
- 13. Solve the equations x + y + z = 9, 2x + 5y + 7z = 52 and 2x + y z = 0 using Gauss Jordan method.

I Semester 2015-2016

Test 2

Course: MATH A 101 Engineering Mathematics I

(Closed Book)

Max Marks: 30

Max Time: 50 Min

Weightage: 15 %

14th Dec' 2015

Set B

Instructions to Candidates

- 1. Write legibly
- 2. Assume suitable data wherever necessary and justify the same.

PART A $(5 \times 1 = 5 \text{ Marks})$

- 1. Say true or false: A matrix in invertible if its determinant= 0.
- 2. When two functions are said to be functionally dependent?
- 3. Write down the expansion of $\frac{1}{1-x}$ in powers of x.
- 4. Define saddle point.
- 5. Determine $\rho(A)$ if A is an $m \times n$ matrix.

PART B (5 X 2 = 10 Marks)

- 6. Write the Maclaurin's series for sinh(x).
- 7. Find $\frac{\partial(u,v)}{\partial(x,y)}$ if $u = x^2 + y^2$ and v = xy.
- 8. Find the Taylor's series expansion of $x^3 + xy^2$ about the point (2, 1) up to first degree.
- 9. Find $\frac{\partial(u,v)}{\partial(x,y)}$ if $u = \frac{x+y}{1-xy}$ and $v = \tan^{-1} x + \tan^{-1} y$.
- 10. Check and comment on the consistency of $x_1 + x_2 = 1$, $2x_1 + 2x_2 = 2$

PART C $(3 \times 5 = 15 \text{ Marks})$

11. Find the maximum and minimum of $x^4 + y^4 - 2x^2 + 4xy - 2y^2$

$$x+2y-z=3$$

12. Test for consistency and solve
$$3x-y-2z=1$$

$$2x-2y+3z=4$$

$$x-y+z=1$$

13. A rectangular box open at the top is to have a volume of 32 cubic feet. Find the dimensions of the box requiring least material for its construction.