

ROLL NO:

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

Weightage: 20 %

Max Marks: 40

Max Time: 1 hr.

Monday, 24th September, 2018

TEST -1

Odd Semester 2018-19

Course: ECE 210 Analog Communication

V Sem. ECE

Instruction:

- (i) Read the question properly and answer accordingly.
- (ii) Question paper consists of 3 parts.
- (iii) Scientific and Non-programmable calculators are permitted.

Part A

(3 Q x 4 M = 12 Marks)

- 1. Define Modulation, Amplitude modulation, frequency modulation, phase modulation:-
- 2. Calculate the length of an antenna required if frequency of the signal to be radiated is 15KHz and 1MHz:-
- 3. Draw the block diagram of Communication system?

Part B

(2 Q x 8 M = 16 Marks)

- 4. Derive the expression for $\mu a = \frac{Amax Amin}{Amax + Amin}$ and $\mu_{at} = sqrt(\mu_1^2 + \mu_2^2)$
- 5. Explain the generation of AM wave using square law modulator.

Part C

(1 Q x 12 M = 12 Marks)

6. An unmodulated signal 40 $\cos(2\pi500x10^3 \text{ t})$ volts is amplitude modulated by an audio wave [20 $\cos 4(2\pi500t)+10 \cos 6(2\pi500t)$]V. Draw spectrum of Carrier, modulating signal and modulated signal. Calculate power in each sideband, if the antenna resistance is 100Ω. Find the efficiency of the modulator.

PRESIDENCY UNIVERSITY, BENGALURU

SCHOOL OF ENGINEERING

TEST 2

Odd Semester: 2018-19

Date: 27 November 2018

Course Code: ECE 210

Time: 1 Hour

Course Name: Analog Communication

Max Marks: 20

Branch & Sem: ECE & V Sem

Weightage: 20%

Instructions:

(i) Read the question properly and answer accordingly.

(ii) Question paper consists of 3 parts.

(iii) Scientific and Non-programmable calculators are permitted.

Part A

Answer all the Questions. Each question carries three marks.

(2x3=06)

- 1. In AM/DSBFC wave if a carrier and one of the sideband is removed then percent power saving is 83.33%? Find the modulation index.
- 2. What is quadrature null effect and Donald duck voice effect?

Part B

Answer all the Questions. Each question carries four marks.

(2x4=08)

- 3. Describe how DSBSC wave is generated using Balanced Modulator.
- 4. Explain the detection of SSBSC using Coherent detection.

Part C

Answer the Question. Question carries six marks.

(1x6=06)

5. A DSBSC transmission contains 20KW. This transmission is to be replaced by a standard AM/DSBFC signal with the same power content. Determine the power content of the carrier and each of the sidebands when the percent modulation is 80%. Also find the efficiency of DSBSC modulator

Roll No.		
----------	--	--

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

END TERM FINAL EXAMINATION

Odd Semester: 2018-19

Date: 27 December 2018

Course Code: ECE 210

Time: 2 Hours

Course Name: Analog Communication

Max Marks: 40

Programme & Sem: ECE & V Sem

Weightage: 40%

Instructions:

(i) Read the question properly and answer accordingly.

- (ii) Question paper consists of 3 parts.
- (iii) Scientific and Non-programmable calculators are permitted.

Part A

Answer all the Questions. Each question carries three marks.

(3Qx3M=09)

- 1. List the merits and demerits of AM and FM
- 2. What is pulse modulation? List different types of pulse modulation
- 3. A 20MHz sinusoidal carrier is frequency modulated by $m(t) = Am \cos 2\pi f m t$ such that the peak frequency deviation is 100KHz. Determine the modulation index if fm=1KHz, 50KHz and 500KHz.

Part B

Answer all the Questions. Each question carries eight marks.

(3Qx8M=24)

- 4. Explain how PPM is generated and detected using R S flip-flop.
- 5. Explain the generation of WBFM using direct method.
- 6. Describe how PLL can be used for the detection of FM signal?

Part C

Answer the Question, Question carries seven marks.

(1Qx7M=07)

7. An angle modulated signal is represented by $s(t) = 10\cos[2\pi 1000000t + 5\sin 2000\pi t + 10\sin 3000\pi t]$ volts. Find the power in the modulated signal, the frequency deviation, deviation ratio, the phase deviation, the approximate transmission bandwidth, carrier swing and maximum frequency component in the modulated signal.

district of manufactures

THE STANFARD OF THE STANFARD

FOR THE WAY BETTER

No. 10 The state of the state o

4 -

8 11