

PRESIDENCY UNIVERSITY BENGALURU

SET A

SCHOOL OF ENGINEERING END TERM EXAMINATION - JAN 2024

Semester: Semester III - 2022

Course Code: CSE2021

Course Name: Data Mining

Program: B.Tech.

Date: 08-JAN-2024

Time: 9:30AM - 12:30 PM

Max Marks: 100

Weightage: 50%

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Question paper consists of 3 parts.
- (iii) Scientific and non-programmable calculator are permitted.
- (iv) Do not write any information on the question paper other than Roll Number.

PART A

ANSWER ALL THE QUESTIONS

 $5 \times 2M = 10M$

1. List any four applications of data mining.

(CO1) [Knowledge]

2. Describe attribute and the types of attributes.

(CO2) [Knowledge]

3. Outline the advantages of FP growth over the Apriori algorithm.

(CO3) [Knowledge]

4. State the Back propagation with suitable diagram?

(CO4) [Knowledge]

5. Define Cluster Analysis and distinguish any 2 differences on intra-cluster and inter-cluster.

(CO5) [Knowledge]

PART B

ANSWER ALL THE QUESTIONS

5 X 10M = 50M

- **6.** a. Discuss the Patterns can be mined in data mining.
 - b. Explain the major issues in data mining on data mining and society.

(CO1) [Comprehension]

7. a. Consider a movie recommendation system where users rate movies on a scale. Two users, User A and User B, have provided ratings for a set of movies. Apply the Cosine similarity measure and Jaccard Coefficient to find the similarity between these users.

A: 15002103, B: 36014212

b. What is Minkowski Distance? Find the similarity metrics using minkowski distance for n=1, 2 using the below data:

X: 10, 25, 70, 80, 45, 60 Y: 100, 115, 145, 200, 165, 180.

(CO2) [Comprehension]

- **8.** A database has 5 transactions. Apply FP Growth algorithm to:
 - 1. Generate the frequent itemset
 - 2. Construct FP tree
 - 3. Find frequent pattern and Conditional frequent pattern generation.

TID	ITEMS	Let the minimum support be 3.
T1	{M,O,N,K,E,Y}	<u>-</u>
T2	{D,O,N,K,E,Y}	_
Т3	$\{M,A,K,E\}$	_
T4	{M,U,C,K,Y}	-
T5	{C,O,O,K,I,E}	_

(CO3) [Comprehension]

9. Consider Temperature data set, Use Naïve Bayesian Classification for predicting the class for a new sample:

Temperature = 26, Humidity = 72, Wind Speed = 8.

Temperature	Humidity	Wind Speed	Class
30	70	5	Hot
25	80	10	Mild
18	60	8	Cool
28	75	12	Hot
22	90	7	Mild
15	50	5	Cool
20	65	9	Mild
32	85	15	Hot
17	55	6	Cool
27	78	11	Hot

(CO4) [Comprehension]

a) Apply K-Means Clustering to form 2 Clusters for the given data set: {2,4,6,9,12,16,20,24,26}
b) Illustrate about Minpoint, Core Point, Border Point and Noise Point in DBSCAN with an example (CO5) [Comprehension]

ANSWER ALL THE QUESTIONS

 $2 \times 20M = 40M$

11. The given data set consists 14 customers historical data of buys_computer depending on age, income, student, credit rating. Apply CART/Gini Index algorithm to find the best splitting attribute to construct decision tree.

Age	Income	Student	Credit_Rating	Buys_Computer
<=30	High	No	Fair	No
<=30	High	No	Excellent	No
31 to 40	High	No	Fair	Yes
>40	Medium	No	Fair	Yes
>40	Low	Yes	Fair	Yes
>40	Low	Yes	Excellent	No
31 to 40	Low	Yes	Excellent	Yes
<=30	Medium	No	Fair	No
<=30	Low	Yes	Fair	Yes
>40	Medium	Yes	Fair	Yes
<=30	Medium	Yes	Excellent	Yes
31 to 40	Medium	No	Excellent	Yes
31 to 40	High	Yes	Fair	Yes
>40	Medium	No	Excellent	No

(CO4) [Application]

12. Apply Single linkage and Complete linkage Agglomerative Clustering for the given distance matrix and visualize the clusters using dendogram

Α	В	С	D	Е	F
0					
5	0				
14	9	0			
11	20	13	0		
18	15	6	3	0	
10	16	8	10	11	0
	0 5 14 11 18	0 5 0 14 9 11 20 18 15	0 5 0 14 9 0 11 20 13 18 15 6	0 5 0 14 9 0 11 20 13 0 18 15 6 3	0 5 0 14 9 0 11 20 13 0 18 15 6 3 0

(CO5) [Application]