

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

TEST 2

Odd Semester: 2018-19

Date: 24 November 2018

Course Code: PET 216

Time: 1 Hour

Course Name: Enhanced Oil Recovery

Max Marks: 20

Branch & Sem: PET & VII Sem Group-1

Weightage: 20%

Instructions:

(i) All parts of the question paper are compulsory to answer

Part A

Answer the Question, Question carries six marks.

(1x6=6)

1. (a) Define polymer?

(1 M)

(b) Draw a schematic diagram of an emulsion polymer field mixing system?

(5 M)

Part B

Answer the Question. Question carries six marks.

(1x6=6)

2. Elucidate the effect of salt concentration on IFT

Part C

Answer the Question. Question carries eight marks.

(1x8=8)

3. What are the major requirements and considerations for a suitable alkaline flooding (Reservoir Characteristics)?

|--|

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

END TERM FINAL EXAMINATION

Odd Semester: 2018-19

Date: 26 December 2018

Course Code: PET 216

Time: 2 Hours

Course Name: Enhanced Oil Recovery

Max Marks: 40

Programme & Sem: PET & VII Sem (Group-1)

Weightage: 40%

Instructions:

(i) Read the questions properly and answer accordingly

Part A

Answer all the Questions. Each question carries three marks.

(4Qx3M=12)

- 1. What are the three reasons to study about the specific microorganisms in EOR process?
- 2. Differentiate between forward combustion and reversion combustion.
- 3. What are the reasons in selecting a shallow depth for Steam Flooding injection process?
- 4. List out the three categories of lifting problems for heavy crudes.

Part B

Answer all the Questions. Each question carries six marks.

(3Qx6M=18)

- 5. What are the federal legislations that affect the EOR operation requirements?
- 6. Write the formula for Ignition time and mention the terms with its units.
- 7. Illustrate the parameters required for process of Steam Flooding (SF).

Part C

Answer the Question. Question carries ten marks.

(1Qx10M=10)

8. Briefly explain about the Evaluation of continuous carbon/oxygen (C/O) logging using any five applications with the help of general remarks/constraints and field experience/observations.