

ROLL NO:

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

Weightage: 20 %

Max Marks: 20

Max Time: 1 hr. Monday, 24th September, 2018

TEST-1

Odd Semester 2018-19

Course: EEE 219 Network Theory

V Sem. EEE

Instruction:

- Read the question properly and answer accordingly. (i)
- Question paper consists of 3 parts. (ii)
- Scientific and Non-programmable calculators are permitted. (iii)

Part A

 $(3 Q \times 3 M = 9 Marks)$

1. Find the voltage drop across AB in the network shown in the Fig. 1 by loop analysis.

Fig. 1

2. Six equal resistors each of 4 Ω are connected as shown in Fig. 2. Find the equivalent resistance between AB.

Fig. 2

3. State and explain Millman's theorem.

Part B

 $(1 Q \times 5 M = 5 Marks)$

4. Find i_x and hence verify reciprocity theorem for the network shown in the Fig. 3

Fig. 3

Part C

 $(1Q \times 6 M = 6 Marks)$

5. Using Norton's theorem, find the current I of the network shown in the Fig. 4

Fig. 4

PRESIDENCY UNIVERSITY, BENGALURU

SCHOOL OF ENGINEERING

TEST 2

Odd Semester: 2018-19

Course Code: EEE 219

Course Name: Network Theory

Branch & Sem: EEE & V Sem

Date: 27 November 2018

Time: 1 Hour

Max Marks: 20

Weightage: 20%

Instructions:

(i) Read the question properly and answer accordingly.

(ii) Question paper consists of 3 parts.

(iii) Scientific and Non-programmable calculators are permitted.

Part A

Answer all the Questions. Each question carries two marks.

(2x3=6)

- 1. Express z-parameters in terms of y-parameters of a two port network.
- 2. Explain the behavior of R, L and C for the initial condition.

Part B

Answer all the Questions. Each question carries four marks.

(2x4=8)

3. The following equations give the relationship between voltages and currents of a two port network.

$$I_1 = 0.25V_1 - 0.2V_2$$

$$I_2 = -0.20V_1 + 0.1V_2$$

Obtain transmission parameters for the network.

4. State and explain maximum power transfer theorem.

Answer the Question. Question carries six marks.

(1x6=6)

5. In the circuit shown in Fig. 1, the switch K is closed at t = 0, with the capacitor uncharged. Find the values of $i(0^+)$, $\frac{di}{dt}(0^+)$ and $\frac{d^2i}{dt^2}(0^+)$, for element values as follows, V = 100 Volts, R = 1000 Ω and C=1 μ F.

Fig. 1

Roll No							
---------	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

END TERM FINAL EXAMINATION

Odd Semester: 2018-19

Date: 28 December 2018

Course Code: EEE 219

Time: 2 Hours

Course Name: Network Theory

Max Marks: 40

Programme & Sem: EEE & V Sem

Weightage: 40%

Instructions:

(i) Read the question properly and answer accordingly.

(ii) Question paper consists of 3 parts.

(iii) Scientific and Non-programmable calculators are permitted.

Part A

Answer all the Questions. Each question carries four marks.

(4Qx4M=16)

1. For the given network shown in Fig. 1, find the voltages at the nodes 1 & 2 by node voltage method.

2. Using convolution theorem find the Laplace Inverse of the function

$$F(s) = \frac{s}{(s+1)(s+2)}$$

- 3. Determine the initial value $f(0^+)$ for the function $F(s) = \frac{2(s+1)}{s^2+2s+5}$
- 4. Find the Laplace transformation of f(t) = coshbt

Answer both the Questions. Each question carries seven marks.

(2Qx7M=14)

5. Obtain an expression for the current in the network shown in Fig. 2.

Fig. 2

6. For the circuit shown in the Fig. 3, find the current through R_L using Thevenin's theorem.

Fig. 3

Part C

Answer the Question. Question carries ten marks.

(1Qx10M=10)

- 7 a) Two wattmeters are connected to measure the input to a 3 phase, 12 HP, 50 Hz, induction motor which works at a full load efficiency of 85 % and a power factor of 0.8. Find the readings of the two wattmeters. [6 M]
 - b) When three balanced impedances are connected in star, across a 3 phase, 415 V, 50 Hz supply, the line current drawn is 20 A, at a lagging p.f. of 0.4. Determine the parameters of the impedance in each phase.

 [4 M]