

PRESIDENCY UNIVERSITY BENGALURU

G9 H'6

SCHOOL OF ENGINEERING END TERM EXAMINATION - JAN 2024

Semester: Semester III - 2022

Course Code: MAT1002 Date: 03-JAN-2024

Time: 9:30AM - 12:30 PM

Course Name: Transform Techniques Partial Differential Equations and Their

Max Marks: 100

Applications

Weightage: 50%

Program : B.Tech.

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Question paper consists of 3 parts.
- (iii) Scientific and non-programmable calculator are permitted.
- (iv) Do not write any information on the question paper other than Roll Number.

PART A

ANSWER ALL THE QUESTIONS

 $4 \times 5M = 20M$

1. Obtain half range Fourier cosine series of x in $^{(0,\pi)}$.

(CO1) [Knowledge]

2. Obtain Laplace transform of the function $\frac{e^{2t}-e^{3t}}{t}$.

(CO2) [Knowledge]

3. Find the Z-transform of $\sin(3n+5)$.

(CO3) [Knowledge]

4. Obtain the PDE by eliminating the arbitrary function $z = (x + y)\phi(x^2 - y^2)$.

(CO4) [Knowledge]

PART B

ANSWER ALL THE QUESTIONS

5 X 10M = 50M

5. Find Fourier series of y in (0,6) up to second harmonic for the following data

X	0	1	2	3	4	5
f(x)	8	6	4	7	9	11

(CO1) [Comprehension]

Apply the Laplace transform technique to solve $\frac{d^2x}{dt^2} - 2\frac{dx}{dt} + x = e^t$ with x = 2, $\frac{dx}{dt} = -1$ at t = 0.

(CO2) [Comprehension]

7. Find the Fourier transform of the function $f(x) = \begin{cases} a^2 - x^2, & |x| \le a \\ 0, & |x| > a \end{cases}$ Hence show that $\int_0^\infty \frac{\sin t - t \cos t}{t^2} dt = \frac{\pi}{4}.$ (CO2) [Comprehension]

8. Solve
$$\frac{\partial^2 z}{\partial x^2} + 3\frac{\partial z}{\partial x} - 4z = 0$$
 with $z = 1$ and $\frac{\partial z}{\partial x} = y$ when $x = 0$.

(CO4) [Comprehension]

9. Solve (y+z)p - (z+x)q = x - y.

(CO4) [Comprehension]

PART C

ANSWER ALL THE QUESTIONS

2 X 15M = 30M

10. Employ the *Z*-transform technique to find response of the system $y_{n+2} + 6y_{n+1} + 9y_n = 2^n$ with $y_0 = y_1 = 0$.

(CO3) [Application]

Apply the method of separation of variables to solve $3\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} = 0$ where $u(x,0) = 4e^{-x}$. (CO4) [Application]

about:blank 2/2