PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

Weightage: 20 %

Max Marks: 40

Max Time: 1 hr.

Tuesday, 25th September, 2018

TEST - 1

Odd Semester 2018-19

Course: MEC 309 Finite Element Methods

V Sem. Mechanical

Instruction:

- (i) Read the question properly and answer accordingly.
- (ii) Question paper consists of 3 parts.
- (iii) Scientific and Non-programmable calculators are permitted

Part A

(2 Q x 5 M = 10 Marks)

- 1. Define isotropic material and write the linear constitutive equation for a 3D isotropic material.
- 2. Briefly explain the steps in FEM.

Part B

(2 Q x 10 M = 20 Marks)

- 3. Derive the potential energy function (π) for a 3D elastic body.
- 4. Determine the values of X₁, X₂ & X₃ using Gauss elimination method.

$$10X_1 + 7X_2 + 5X_3 = -5$$

 $6X_1 + 4X_2 - 2X_3 = -4$
 $5X_1 - 2X_2 + 4X_3 = 3$

Part C

(1 Q x 10 M = 10 Marks)

5. Using the principle of minimum potential energy determine the displacement at the nodes for a spring system shown in figure 1. $K_1 = 500 \text{ N/m}$, $K_2 = 700 \text{ N/m}$, $K_3 = 400 \text{ N/m}$, $K_4 = 400 \text{ N/m}$, $F_1 = 20 \text{ N}$, $F_2 = 10 \text{ N}$ and $F_3 = 30 \text{ N}$.

Fig. 1

PRESIDENCY UNIVERSITY, BENGALURU

SCHOOL OF ENGINEERING

TEST 2

Odd Semester: 2018-19

Course Code: MEC 309

Course Name: Finite Element Methods

Branch & Sem: MEC & V sem.

Date: 28 November 2018

Time: 1 Hour

Max Marks:

Weightage: 20%

Instructions:

(i) Read the question properly and answer accordingly.

(ii) Question paper consists of 3 parts.

(iii) Scientific and Non-programmable calculators are permitted.

(iv) All dimensions in mm.

Part A

Answer **all** the Questions. **Each** question carries **ten** mark.

(2x10=20)

- 1. Derive (i) [B] matrix & (ii) [K] matrix for a 3 noded 1D bar element.
- 2. Determine (i) [K] (ii) [B] for the truss element shown in fig. 1

Fig .1

Part B

Answer all the Questions. Each question carries eight marks.

(1x8=8)

3. Define a shape function. What are the properties that the shape function should satisfy?

Answer the Question. Each question carries six marks.

(2x6=12)

4. Determine the shape function and temperature at point "P" for an element shown in fig. 2

Fig.2

5. Find the shape function, Jacobian matrix & [B] matrix for a 3 noded CST element shown in fig. 3

Fig. 3

Roll No.											
----------	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

END TERM FINAL EXAMINATION

Odd Semester: 2018-19

Course Code: MEC 309

Course Name: Finite Element Methods

Programme & Sem: MECH & V Sem

Date: 29 December 2018

Time: 2 Hours

Max Marks: 80

Weightage: 40%

Instructions:

(i) Read the question properly and answer accordingly.

(ii) Question paper consists of 3 parts.

(iii) Scientific and Non-programmable calculators are permitted

Part A

Answer all the Questions. Each question carries five marks.

(4Qx5M=20)

- 1. Derive the stiffness matrix of a 2 noded truss element.
- 2. Explain the concept of iso parametric, sub parametric and super parametric elements and their uses.
- 3. Elucidate the steps involved in FEM.
- 4. Explain the significance of banded matrix in FEM.

Part B

Answer all the Questions. Each question carries ten marks.

(3Qx10M=30)

- 5. Derive the Jacobian matrix of 3 noded triangular element.
- 6. Derive the Hermite shape functions of a beam element.
- 7. For a beam shown in Fig. 1 determine the deflection, slope. Given beam length 10m, I = $1 \times 10^{-6} \ m^4$ and E = $2 \times 10^5 \ \text{N/mm}^2$.

Fig.1

- 8. Consider the truss shown in Fig. 2, it is given that $E=2\times10^5~\text{N}/\text{mm}^2$. Complete the following. Take P = 2000 N
 - i. Determine the element stiffness matrix for each element.
 - ii. Assemble the structural stiffness matrix K for the entire truss.
 - iii. Using elimination approach, solve for the nodal displacements.
- iv. Calculate the stresses in each element.

Fig.2

9. A composite wall consists of three materials as shown in Fig. 3. The outer temperature T_0 = 20 °C. Convection heat transfer takes place on the inner surface of the wall with T_{∞} = 800 °C and h=25 W/ m^2 °C. Determine the temperature distribution in the wall.

Fig.3