

PRESIDENCY UNIVERSITY, BENGALURU

SCHOOL OF ENGINEERING

TEST 2

Odd Semester: 2018-19

Date: 28 November 2018

Course Code: ECE 401

Time: 1 Hour

Course Name: Artificial Neural Network

Max Marks: 20

Branch & Sem: Open Elective & VII Sem Group - I

Weightage: 20%

Instructions:

(i) All parts of the Question paper are compulsory to answer

Part A

Answer all the Questions. Each question carries one marks.

(1x4=4)

- 1. Explain learning rate and it's approximate choice in perceptron learning algorithm.
- 2. Define Function signals and Error signals with respect to multilayer perceptron.
- 3. Define the basic principle of least -Square algorithm.
- 4. The neuron shown below has weights w1, w2, . . . , wN and inputs x1, x2, . . . , xN . The output y can be expressed as,

Part B

Answer all the Questions. Each question carries four marks.

(2x4=8)

- 5. Explain and prove with example
 - a) The perceptron is a linear classifier.
 - b) Also explain a problem which is not linearly separable
- 6. Discuss the two methods of supervised learning used in multilayer perceptron along with their advantages and limitations.

Part C

Answer the Question. Question carries eight marks.

(1x8=8)

6. Using the Perceptron learning rule, Develop a perceptron for AND function with binary input and bipolar targets without bias up to 2 epochs Find the weights required to perform the following pattern classification.

Consider the Training data

Input		Output			
1	1	1			
1	0	-1			
0	1	-1			
1	1	-1			

Roll No						

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

END TERM FINAL EXAMINATION

Odd Semester: 2018-19

Date: 29 December 2018

Course Code: ECE 401

Time: 2 Hours

Course Name: Artificial Neural Network

Max Marks: 40

Programme & Sem: VII Sem (Open Elective)

Weightage: 40%

Instructions:

(i) Read the questions carefully.

(ii) Assume the suitable data if required

Part A

Answer both the Questions. Each question carries five marks.

(2Qx5M=10)

- 1. What are the functions used in back-propagation algorithm? Which quality of these functions make back-propagation algorithm more successful than other algorithm?
- 2. Prove whether the X-Nor implementation using single neuron is possible or not If not then, draw a multilayer neuron structure for the same:-

Part B

Answer both the Questions. Each question carries eight marks.

(2Qx8M=16)

- 3. Explain the rules that can be used for unsupervised learning by perusing the selforganizing perspective.
- 4. Explain how the rate of change of error will help to update weight in back propagation by deriving the expression for error gradient $\frac{\partial \varepsilon(n)}{\partial w_{il}(n)}$

Part C

Answer the Question. Question carries fourteen marks.

(1Qx14M=14)

5. Update the weight W₅ and W₆ using the Back propagation considering Sigmoidal Neuron

For the Given pattern

Input x_1	Input x ₂	Target of O ₁	Target of O ₂		
.5	5	.9	.1		

The Initial Architecture of the network is

Where
$$w_1 = .1, w_2 = -.2w_3 = .3w_4 = .55$$
, $w_5 = .37$, $w_6 = .9, w_7 = -0.22, w_8 = .9$
$$b_{hw1} = .01, b_{hw2} = -.02, b_{ow1} = .31, b_{ow2} = .27$$