Roll No

PRESIDENCY UNIVERSITY BENGALURU

SET – B

SCHOOL OF ENGINEERING END TERM EXAMINATION – MAY/JUNE 2024

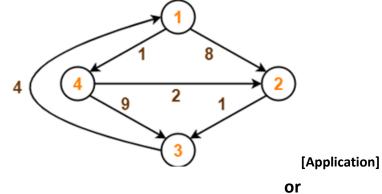
Semester : Semester IV - 2022 Course Code : CSE2007 Course Name : Design and Analysis of Algorithms Date : June 10, 2024 Time : 09.30am to 12.30pm Max Marks :100

Weightage: 50%

Program : B.Tech. Computer Science and Engineering

Note: 1. Answer ALL 5 FULL Questions.

2. Each Full Question carries 20 Marks

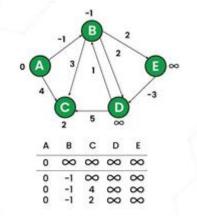

3. Scientific and non-programmable calculator are permitted.

4. Do not write any information on the question paper other than Roll Number.

1.a.	Define Worst-case, Best-case efficiencies [Knowledge]	(CO1)	(04 Marks)
1.b.	List down the steps involved in mathematical analysis of Recursive Algorithms [Comprehension]	(CO1)	(06 Marks)
1.c.	Explain asymptotic notations in detail [Application]	(CO1)	(10 Marks)
	or		
2.a.	List down the steps involved in analyzing an algorithm [Knowledge]	(CO1)	(04 Marks)
2.b.	List down the steps involved in mathematical analysis of Non-Recursive Algorithms [Comprehension]	(CO1)	(06 Marks)
2.c.	Find the time complexity (upper bound) for the below recursive functions [Application]	(CO1)	(10 Marks)
	T(n)=n + T(n-1); ;n>1 T(n)=1 ;n=1		
3.a.	List down the steps involved for bubble sort and apply the same to sort 6 0 3 5 [Knowledge]	(CO2)	(04 Marks)
3.b.	Write C Program or algorithm to Print all Distinct (Unique) Elements in given Array [Comprehension]	(CO2)	(06 Marks)
3.c.	Demonstrate string matching algorithm with suitable example [Application]	(CO2)	(10 Marks)

4.c.	Explain Master's theorem [Knowledge]	(CO2)	(04 Marks)	
4.b.	Write an algorithm to find uniqueness of elements in an array and also give the mathematical analysis of this non recursive algorithm with all steps. [Comprehension]	(CO2)	(06 Marks)	
4.a.	Write and apply selection sort algorithm on following set of integers 8,5, 7,3,2. [Application]	(CO2)	(10 Marks)	
5.a.	When does the worst case occur in Merge Sort? Give an analysis of merge sort algorithm? What types of Datasets work best for Merge Sort? [Knowledge]	(CO3)	(04 Marks)	
5.b.	How does the Divide and Conquer Strategy work with Merge Sort? [Comprehension]	(CO3)	(06 Marks)	
5.c.	Write and explain Quick sort algorithm [Application]	(CO3)	(10 Marks)	
or				
6.a.	List down the advantages and limitations of divide & conquer technique [Knowledge]	(CO3)	(04 Marks)	
6.b.	Briefly explain decrease and conquer with two advantages and disadvantages [Comprehension]	(CO3)	(06 Marks)	
6.c.	Write and explain binary search algorithm with an example [Application]	(CO3)	(10 Marks)	

- 7.a List down any four applications of the greedy strategy [Knowledge] (CO4) (04 Marks)
- 7.b. Why Dijkstra's Algorithms fails for the Graphs having Negative Edges? (CO4) (06 Marks) [Comprehension]
- 7.c Apply all pair shortest path algorithm (Floyd Warshall) for the below **(CO4) (10 Marks)** graph using 1 as source vertex


- 8.a Define Dynamic programming and briefly list down three of its properties (CO4) (04 Marks) [Knowledge]
- 8.b. Briefly explain steps in involved in Floyd algorithm. [Comprehension] (CO4) (06 Marks)
- 8.c Write & explain Kruskal's algorithm [Application] (CO4) (10 Marks)

9.a List down the steps involved in back tracking [Knowledge] (CO5) (04 Marks)
9.b How do I determine the constraints or conditions for backtracking? What happens if there is no valid solution in the search space? [Comprehension]
9.c Draw state space tree for N queen's problem with 4 *4 chess board (CO5) (10 Marks) having 4 queensQ1, Q2, Q3, Q4. [Application]

or

- 10.aWhen to Use a Backtracking Algorithm? [Knowledge](C05)(04 Marks)
- 10.b For a given set {3, 34, 4, 12, 5, 2} and the target sum = 9. Define a **(CO5) (06 Marks)** function and use recursive method to check whether there exists a subset with the given sum or not. **[Comprehension]**
- 10.c Apply bellman ford algorithm for below graph

(CO5) (10 Marks)

[Application]