Roll No

PRESIDENCY UNIVERSITY BENGALURU

SET A

SCHOOL OF ENGINEERING **END TERM EXAMINATION - MAY/JUNE 2024**

Semester : Semester IV - 2022 Course Code : MAT2003 Course Name : Numerical Methods for Engineers Program : Mathematics for B.Tech

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Question paper consists of 3 parts.
- (iii) Scientific and non-programmable calculator are permitted.

Answer any FIVE questions

(iv) Do not write any information on the question paper other than Roll Number.

PART A

1. Identify the lower triangular matrix for the equations 4x + y + 3z = 11; 3x + 4y + 2z = 11; 2x + 3y + z = 7using the LU decomposition method.

(CO1) [Knowledge]

- 2. Identify the root of the equation $x^3 + 5x 11 = 0$ that lies between 1 and 2. Find the real root by the Newton-Raphson method, and carry out for 2 iterations only.
- **3.** State the formula of Simpson's 3/8 rule and Trapezoidal rule for the function y = f(x) taking the values y_0, y_1, \dots, y_n corresponding to x_0, x_1, \dots, x_n .

(CO2) [Knowledge]

4. Using Newton's divided difference formula to find the f(3) given the data: 0 2 6

f(x)792 648 704

define the forward difference Δy_0 and $\Delta^2 y_0$. Further, write **5.** For y_0, y_1, y_2 corresponding to x_0, x_1, x_2 Newton's forward interpolation formula.

(CO2) [Knowledge]

(CO2) [Knowledge]

6. Identify $y_1^{(1)}$ using modified Euler's formula if $\frac{dy}{dx} = (x + y)^2$, y(0) = 1 and h = 0.2

(CO3) [Knowledge]

7. For the differential equation $\frac{dy}{dx} = x + y^2$, y(0) = 1, h = 0.2 find K_1 and K_2 from Runge-Kutta 4th order method

(CO3) [Knowledge]

Date : June 06, 2024 Time: 09.30AM to 12.30AM Max Marks : 100 Weightage: 50%

5Q X 4M = 20M

(CO1) [Knowledge]

PART B

Answer any FIVE questions

three iterations.

8. Obtain the solution of the system of equations 2x + y + 6z = 9, 8x + 3y + 2z = 13 and x + 5y + z = 7 by using Gauss Seidel iteration method correct to three decimal places. Carry out

(CO1) [Comprehension]

5Q X 10M = 50M

- **9.** Estimate the root of the equation $4x e^x = 0$ that lies between 2 and 3 by Newton-Raphson method. (CO1) [Comprehension]
- **10.** Compute *f*(9) using (*i*) Newton's divided difference formula (*ii*) Lagrange's interpolation formula for the following table.

(CO2) [Comprehension]

11. Using the appropriate interpolation formula, compute f(1.5) and f(4.5), given that

x	1	2	3	4	5
f(x)	1	8	27	64	125

12. Compute y(0.3) given that $\frac{dy}{dx} = x + y$, y(0) = 1 and h = 0.3 using modified Euler's method and correct it to four decimal places.

(CO3) [Comprehension]

13. Given $\frac{dy}{dx} = x^3 + y$, y(0) = 2, h = 0.1, estimate y(0.2) by Runge-Kutta method of fourth order.

(CO3) [Comprehension]

 $2Q \times 15M = 30M$

PART C

Answer any TWO questions

- **14.** Apply LU decomposition method to solve the system of linear equations, 3x + y - z = 3, 2x - 8y + z = -5 and x - 2y + 9z = 8 (CO1) [Application]
- **15.** Find approximate value of $\int_{0}^{6} x \sec(x) dx$ using (*i*) Trapezoidal rule (*ii*) Simpson's $\frac{1}{3}^{rd}$ rule (*iii*) Simpson's $\frac{3}{8}^{th}$ rule, by dividing the range into 7 ordinates.
- 16. Determine Modified Euler's method to solve $\frac{dy}{dx} = x + |\sqrt{y}|$, y(0) = 1 for the range 0 < x < 0.6 taking h = 0.2. (carry out computations correct to 3 decimal places)

(CO3) [Application]