

Roll No

PRESIDENCY UNIVERSITY BENGALURU

School Of Computer Science and Engineering & Information Science

End-Term Examinations, Aug 2024

Odd Semester: 2023 - 24

Course Code: CSE3081

Course Name: Digital Image Processing

Department: CSE (Lateral Entry)

Date: 08.08.2024

Time: 9.30am -12.30pm

Max Marks: 100

Weightage: 50%

Instructions:

(i) Read the all questions carefully and answer accordingly.

(ii) Do not write any matter on the question paper other than roll number.

Q. No				Ques	tions			Mark s	СО	RB T
	a. Li	st and exp	lain the co	mponents	of digital	image pro	ocessing.	4	CO1	L1
		rite a mea ter with su	working of your	6	CO1	L2				
		epare imag low.	ge negativ	e. Determ	ine the ne	gative of a	a 4 bit image shown			
1			10	12	8	10				
			12	15	13	7		10	CO1	L3
			7	15	9	7				
			12	7	15	10				
				ı		ı	_			

OR

	a.	Define each parameters in an equation for finding negative of an image	4	CO1	L1	
2	b.	Write the general form of representation of log transformation in digital image processing	6	CO1	L2	
	c.	Explain the fundamental steps in Digital Image Processing with a neat block diagram?	10	CO1	L3	

3	a. What are filters in image processing. List out various image processing filters for smoothening and sharpening the images.	4	CO2	L1
	b. Derive Laplacian filter with four neighbors.	6	CO2	L2

c. Prepare filter of eight neight	_	rom given	image sh	own below	vusing laplace fil	lter		
	210	12	8	10				
	112	115	213	127		10	CO2	
	77	15	29	117				
	212	78	15	210				
d.		•	•	•				

OR

a.	Explain Basic	Filtering op	eration in t	the Freque	ncy Doma	ain with suitable diagram	4	CO2	
b.		sent all possible gray level images for the given image for four bit representation							
		10	12	8	14				L2
		12	15	13	5			600	
		11	15	9	2		6	CO2	
		4	6	15	1				
c.	Prepare filter eight neighbo	_	rom given	image sho	own belo	w using mean filter of			
c.	-	_	rom given	image sho	own belo	w using mean filter of			
c.	-	ours.	T			w using mean filter of	10	CO2	
c.	-	ours.	12	8	10	w using mean filter of	10	CO2	

	a. Illustrate working of any two denoising mean filters	4	CO3	L1
5	b. Explain any three order static filters with appropriate mathematical mo	deling 6	CO3	L2
	c. Elaborate any three noise models with suitable diagram	10	CO3	L3

OR

	a	a.	Show the importance of standard deviation in adaptive filtering process	4	CO3	L1
6	1	b.	What you mean by restoration of images. Explain the restoration process in frequency domain with suitable diagram.	6	CO3	L2
	(с.	Describe band pass and band reject filters in frequency domain. How butter worth and notch filters do the filtering action?	10	CO3	L3

b. Write line detection masks for horizontal, vertical and inclined lines	6	CO4	L2
c. Convert given RGB image into CMY representation. What will be saturation and intensity values for each pixels here in RGB representation?			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			
(212,12 (15,21, (13,34, (217,12 ,234) 245) 213) 7,221)	10	CO4	L3
$ \begin{array}{c cccc} (7,4,7) & (15,43, \\ \hline 56) & (9,6,3) & (217,33, \\ \hline ,137) & \end{array} $			
(222,24 (127,21 (15,23, (120,23 3,255) 7,78) 43) ,45)			

ÓR

	a. What is HSI model in color image representation. Give significance of each term in this model										4	CO4	L1
	b.	b. Compare Region -Based and Edge-Based segmentation methods . Give at least one example for each.										CO4	L2
	c. Apply split and merge segmentation for the given image with a threshold of 3. Show all regions with separate labels												
		6	5	6	6	7	7	6	6				
8		6	7	6	7	5	5	4	7				
0		6	6	4	4	3	2	5	6				
		5	4	5	4	2	3	4	6		10	CO4	L3
		0	3	2	3	3	2	4	7				
		0	0	0	0	2	2	5	6				
		1	1	0	1	0	3	4	4				
		1	0	1	0	2	3	5	4				

	a. Explain any thr processing	ee distan	ce calcu	ılation	method	s used i	in digital image	4	CO1	L
	b. Prepare image negative. Determine the negative of a 4 bit image shown below.									
		1	12		8	14				
		12	11		13	3		6	CO1	L
9		7	15		9	7				
	12 4 15 10									
	c. Compute the less image segment	10	601	т,						
		3	4	1	2	0		10	CO1	L
		0	1	0	4	2	(Q)			

		2	2	3	1	4
	(P)	3	0	4	2	1
		1	2	0	3	4

OR

	a. Explain working of Ideal High pass and Ideal Low pass filters in frequency domain with help of mathematical modeling								CO2	L1
	b.	Elaborate wor each step with	tions involved in	6	CO2	L2				
			10	12	8	10				
10			12	15	13	7				
			7	15	9	7		10	CO2	L3
			12	7	15	10				
	c. Calculate histogram equalization for the given image									