

Roll No													
---------	--	--	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY BENGALURU

School Of Computer Science and Engineering & Information Science

End-Term Examinations, Aug 2024

Odd Semester: 2023 - 24

Course Code: CSE3120

Course Name: Operating System with Linux Internals

Department: ISE&IST(LATERAL ENTRY)

Date: 09/08/2024

Time: 9:30AM-12:30PM

Max Marks: 100

Weightage: 50%

Instructions:

(i) Read the all questions carefully and answer accordingly.

(ii) Do not write any matter on the question paper other than roll number.

Q.N o			Marks	СО	RB T					
	a.	Explain vari	4	CO1	L1					
1	b.	What are th	6	CO1	L2					
	c.	What are m	10	CO1	L3					
	a.	4	CO1	L1						
2	b.	Explain any	6	CO1	L2					
	c.	What are sy	stem calls?	Explain each	category wit	:h suitable ex	kamples.	10	CO1	L3
	a.	4	CO2	L1						
	b.	Explain vario	ous states c	of process wit	h a neat diag	ram?		6	CO2	L2
3	C.									
			Process	AT (m sec)	BT(m sec)	PRIORITY		10	CO2	L3
			P1	0	10	1		10	002	20
			P2	2	6	3				
			Р3	1	3	4				
		P4 4 2 2								
			P5	3	5	1				

	a.	What is turnar	4	CO2	L1				
	b.	WAP to demo	6	CO2	L2				
	C.	Calculate Aver system scenari							
4		Process AT (m sec) BT(m sec)					10	602	L3
			P1	0	18			CO2	
			P2	2	2				
			Р3	1	3				

	a. What is process Synchronization? Explain with a neat Examp	ole.	4	CO3	L1
5	b. Explain the following terminologies a)Race condition b)Criticc)Non preemptive	cal section	6	CO3	L2
	c. What is bankers algorithm. Explain the algorithm with details	s steps .	10	CO3	L3

OR

	a. Explain th satisfy?	e 3 ne	cessary	conc	ditions	whic	h the	criti	cal-sec	ction pr	oblem must	4	CO3	L1
	b. What is th	6	CO3	L2										
6	 c. Considering a system with four processes P0 through P3 and three resources of type A, B, C. Answer the following queries using Bankers algorithm. a) Is the system in safe sequence. b) If request from process p1 arrives for (1 0 2) can the request be granted immediately. 													
	PROCES S ALLOCATION MAX AVAILABLE											10	CO3	L3
		Α	ВС	1	4	В	С	Α	В	С				
	PO	0	2 () 1	14 :	10	3	6	6	4				
	P1	4	0 () (5	4	4							
	P2	6	0 4	. 1	13 (0	4							
	Р3	4	2	2 4	4	4	4							
	P4	0	0	4 8	8 6	6	6							

	a.	Tabulate the difference reasons.	ce betweer	n a program an	d a process w	ith proper	4	CO2	L1
7	b.								
			Process	AT (m sec)	6	CO2	L2		
			P1	0					
			P2	2	2				
			Р3	1	3				

	c.	Calculate Average Waiting given system scenario if it							
		Ī	Process AT (m BT(m sec)						
		Ī	P1	0	12		10	CO2	L3
			P2	2	7				
		- I	P3	2	5				
		Ī	P4	3	2				
		1	P5	4	3				
		<u>.</u>		OR				1	
	a.	Define independent and	4	CO2	L1				
8	b.	What is IPC? What are the	6	CO2	L2				
	C.	Demonstrate how a proce simple c program.	han with a	10	CO2	L3			
	a.	Demonstrate the program	n to open	and displa	y the conte	nts of file.	4	CO1	L1
9	b.	Explain the UNIX architect	ture with	a neat diag	gram.		6	CO1	L2
	C.	What are computer environeat diagrams?	onment s	ystems?Ex _l	olain any 3	systems with	10	CO1	L3
				OR					
	a.	What is mutex lock? Expli the critical section by writ	4	CO3	L1				
10	b.	What are monitors? Exploration was are monitors?	l its conditional	6	CO3	L2			
	C.	What are classical proble philosopher problem with	•		•	Dining	10	CO3	L3