

Roll No													
---------	--	--	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY BENGALURU

School Of Computer Science and Engineering & Information Science

End-Term Examinations, Aug 2024

Odd Semester: 2023 - 24

Course Code: CSE2007

Course Name: Design and Analysis of Algorithms

Department: SoCSE

Date:06.08.2024

Time: 09.30AM TO 12.30PM

Max Marks: 100

Weightage: 50%

Instructions:

(i) Read the all questions carefully and answer accordingly.

(ii) Do not write any matter on the question paper other than roll number.

Q.No	Questions	Ma rks	C O	R B T
		4	С	Т 1
	a. Define algorithm and brief about the key words in the definition.	$\frac{1}{2}$	1	L1
			С	
1	b. Design algorithm to find factorial of a number.	6	0	L2
	b. Design algorithm to mid factorial of a number.		C	
		10	0	L3
	c. Discuss the Analysis Framework for an algorithm.		1	

	a. Discuss the problem types: Sorting and Searching.	4	C O 1	L1
2	b. Discuss the Basic asymptotic notations.	6	C O 1	L2
	c. With general plan for analyzing the time efficiency of non recursive algorithm using it Design algorithm to find largest element in list of n numbers.	10	C O 1	L3

	a.	Design Bubble Sort Algorithm	4	CO2	L1
	b.	Design Sequential Search Algorithm, trace the algorithm with example	6	CO2	L2
	c.	Solve the problem of Travelling Salesperson using Exhaustive Search Method.			
3			10	CO2	L3
		OR			

	a.	Desigr	Selection	Sort Al	gorithm	4	CO 2	L 1
	b.	Desigr examp		rce Strin	g Matching Algorithm, trace the algorithm with	6	CO 2	L 2
1	C.			Problem	for the given data.		CO	
4		Item	Weight	Value			2	
		1	7	42		1		L
		2	3	12		0		3
		3	4	40				
		4	5	25				

	a.	Discuss method divide and conquer	4	CO 3	L 1
5	b.	Design Binary Search Algorithm	6	CO 3	L 2
	C.	Design algorithm to sort elements given using Merge Sort and find the time complexity for the same 32, -45, -23, 54, 43, 34, 09, 20, 27	1 0	CO 3	L 3

	a. Discuss method decrease and conquer	4	CO 3	L 1
		6	CO	L
6	b. Design Insertion Sort Algorithm	0	3	2
	c. Design algorithm to sort elements given using Quick Sort and find the time complexity for the same	1	СО	L
	32, -45, -23, 54, 43, 34, 09, 20, 27	0	3	3

	a.	Design Warsh	all's A	lgori	thm				4	CO 4	L 1
	b.	Apply Approp	oriate a	algor	ithm	and f	ind th	e Single Source Shortest Path			
							45				
7					10	20 15	5 20 5	10 3 35 30	6	CO 4	L 2
	c.	Consider the f	ive-sy	mbol	alph	abet {	(A, B, 0	C, D, _} construct the Huffman Tree			
		Construction.							1	CO	L
		Symbol	A	В	С	D	-		0	4	3
		Frequencies	0.35	0.1	0.2	0.2	0.15				

	a. Design Floyd's Algorithm	4	CO 4	L 1
8	b. Apply Appropriate algorithm and find the Single Source Shortest Path	6	CO 4	L 2
	c. Design Prims Algorithm to find the Minimum Spanning tree for the given graph.	1 0	CO 4	L 3

	a. Discuss Backtracking Method	4	CO5	L1
	b. Design Minimum Spanning tree the given graph using approach of Kruskal			
9	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	CO5	L2
	c. Design State Space Tree for n-Queen. N=4	10	CO5	L3

	a. Discuss Branch and Bound Method	4	CO 5	L 1
	b. Design State Space Tree for Subset-Sum problem. A = {1,2,5,6,8} for d=9	6	CO 5	L 2
10	c. Design State Space Tree and find the optimal solution for travelling salesman problem using Branch and Bound Technique. 8 1 5 6 7 9	1 0	CO 5	L 3