

| Roll No |  |  |  |  |  |  |  |  |  |  |  |  |  |
|---------|--|--|--|--|--|--|--|--|--|--|--|--|--|
|---------|--|--|--|--|--|--|--|--|--|--|--|--|--|

## PRESIDENCY UNIVERSITY BENGALURU

## **School Of Computer Science and Engineering & Information Science**

## **End-Term Examinations, Aug 2024**

**Odd Semester**: 2023 - 24

Course Code: CSE6006

Course Name: Al in Internet of Things

Department: M.TECH - Al

Date: 14/08/2024

Time: 09.30am to 12.30pm

Max Marks: 100

Weightage: 50%

## Instructions:

(i) Read the all questions carefully and answer accordingly.

(ii) Do not write any matter on the question paper other than roll number.

| Q.<br>No |    | Questions                                                                                                                                                                            | Marks | со  | RBT |
|----------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|-----|
| 1        | a. | Explain the key components, applications, and the significance of AI in modern technology.                                                                                           | 4     | CO1 | L2  |
|          | b. | What are the key features of deep learning models, and how do they differ from traditional machine learning algorithms?                                                              | 6     | CO1 | L1  |
|          | C. | Describe the fundamental concepts of Machine Learning (ML). What are the main types of ML algorithms, and how do they differ in terms of learning and prediction?                    | 10    | CO1 | L1  |
|          |    | OR                                                                                                                                                                                   |       |     |     |
|          | a. | What are the main sources of uncertainty in AI, and how do AI systems handle uncertain information?                                                                                  | 4     | CO1 | L1  |
| 2        | b. | Explain Genetic Algorithms (GAs) and their role in optimization problems. How do GAs mimic natural selection to find solutions?                                                      | 6     | CO1 | L2  |
|          | C. | Explain the basics of Python programming and its relevance to Al development. How does Python support Al and ML applications?                                                        | 10    | CO1 | L2  |
|          |    |                                                                                                                                                                                      |       |     |     |
|          | a. | Compare and contrast microprocessors and microcontrollers.                                                                                                                           | 4     | CO2 | L2  |
| 3        | b. | Describe the key components, applications, and the role of IoT in modern technology.                                                                                                 | 6     | CO2 | L2  |
| 3 –      | C. | What are transducers and sensors? Explain the various types of transducers and sensors, including their applications and how they are used in different contexts.                    | 10    | CO2 | L1  |
|          |    | OR                                                                                                                                                                                   |       |     |     |
|          | a. | What are the primary features of Arduino boards that make them suitable for prototyping and development?                                                                             | 4     | CO2 | L1  |
| 4        | b. | Define microcontrollers and explain their role in IoT systems. How do microcontrollers contribute to the functionality of IoT devices?                                               | 6     | CO2 | L1  |
|          | C. | How do you program an Arduino? Describe the key components of the Arduino programming language. What techniques are available for implementing timing functions in Arduino projects? | 10    | CO2 | L1  |

| 5   | a. | Explore the application of AI in predictive and proactive maintenance scheduling for sensors.                                                       | 4  | CO3 | L2 |  |  |
|-----|----|-----------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|----|--|--|
|     | b. | How do queuing models optimize data processing and communication in                                                                                 | 6  | CO3 | L1 |  |  |
|     | C. | sensor systems?  Outline the role of data clustering algorithms in sensor networks. How do                                                          |    |     |    |  |  |
|     | С. | clustering techniques contribute to data organization and pattern                                                                                   | 10 | CO3 | L2 |  |  |
|     |    | recognition in sensor data?  OR                                                                                                                     |    |     |    |  |  |
|     | T  |                                                                                                                                                     | T  |     |    |  |  |
| 6   | a. | Discuss energy-efficient scheduling techniques for sensors using Al                                                                                 | 4  | 603 | L3 |  |  |
|     |    | algorithms. How do these techniques contribute to extending the battery life of sensor networks?                                                    | 4  | CO3 | L3 |  |  |
|     | b. | Discuss the role of AI algorithms in enhancing sensor functionality and                                                                             | 6  | CO3 | L2 |  |  |
|     |    | data accuracy in sensor systems.                                                                                                                    |    | 003 | LZ |  |  |
|     | C. | Identify the role of AI in project scheduling and assembly line balancing. How do AI algorithms enhance scheduling and optimization in              | 10 | CO3 | L3 |  |  |
|     |    | manufacturing and production environments?                                                                                                          | 10 | COS | LS |  |  |
|     |    |                                                                                                                                                     |    |     |    |  |  |
|     | Т  |                                                                                                                                                     |    | Π   |    |  |  |
|     | a. | How does 6LoWPAN enable IPv6 communication over low-power wireless networks?                                                                        | 4  | CO4 | L1 |  |  |
|     | b. | Compare and contrast the Message Queue Telemetry Transport protocol                                                                                 |    |     |    |  |  |
| 7   |    | with the Constrained Application Protocol. What are the primary                                                                                     | 6  | CO4 | L2 |  |  |
| 7   |    | differences in their design?                                                                                                                        |    |     |    |  |  |
|     | C. |                                                                                                                                                     | 10 | 604 |    |  |  |
|     |    | differences between these technologies, and how are they used in various IoT applications?                                                          | 10 | CO4 | L3 |  |  |
|     | OR |                                                                                                                                                     |    |     |    |  |  |
|     | a. | Discuss the strengths and limitations of Zigbee and Bluetooth.                                                                                      | 4  | CO4 | L2 |  |  |
|     | b. | Explain the functions and responsibilities of each layer within the                                                                                 |    |     |    |  |  |
| 8   |    | Bluetooth protocol stack, and discuss how they contribute to Bluetooth                                                                              | 6  | CO4 | L2 |  |  |
|     | C. | communication.  Explain the working principles of the Message Queue Telemetry Transport                                                             |    |     |    |  |  |
|     | C. | (MQTT) protocol. How is MQTT particularly suited for IoT applications?                                                                              | 10 | CO4 | L2 |  |  |
|     |    |                                                                                                                                                     |    |     |    |  |  |
|     | a. | How do stochastic models handle uncertainties and variations in sensor                                                                              | 4  | CO3 | L1 |  |  |
| 9 _ | 1. | data?                                                                                                                                               |    |     |    |  |  |
|     | b. | Identify the use of evolutionary algorithms in sensor-based systems.                                                                                | 6  | CO3 | L3 |  |  |
|     | C. | Describe the various ways in which AI is integrated with IoT to enhance a specific application of your choice. Provide detailed examples to support | 10 | CO4 | L2 |  |  |
|     |    | your explanation.                                                                                                                                   | 10 | 204 |    |  |  |
| OR  |    |                                                                                                                                                     |    |     |    |  |  |
| 10  | a. | How does Zigbee ensure reliable communication in low-power and low-                                                                                 | 4  | CO4 | L1 |  |  |
|     |    | data-rate environments?                                                                                                                             | 7  |     |    |  |  |
|     | b. | Discuss the role of the Advanced Message Queuing Protocol (AMQP) in IoT applications. What are its key features and how does it ensure reliable     | 6  | CO4 | L2 |  |  |
|     |    | message delivery?                                                                                                                                   | U  | 204 | LL |  |  |
|     | c. | Discuss the application of classification algorithms in sensor data analysis.                                                                       |    |     |    |  |  |
|     |    | How do classification algorithms improve the performance of sensors in                                                                              | 10 | CO3 | L3 |  |  |
|     | 1  | IoT?                                                                                                                                                |    |     |    |  |  |