Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/123456789/1783
Full metadata record
DC FieldValueLanguage
dc.contributor.authorS.Velliangiri
dc.contributor.authorP.Karthikkeyan
dc.contributor.authorV.Vinoth Kumar
dc.date.accessioned2022-05-23T08:44:19Z-
dc.date.available2022-05-23T08:44:19Z-
dc.date.issued2020
dc.identifier.citationJournal of Experimental & Theoretical Artificial Intelligence
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/1783-
dc.description.abstractCloud computing services provide a wide range of resource pool for maintaining a large amount of data. Cloud services are commonly used as the private or public data forum based on the demand, and the increase in usage has lead to security concerns. The information in the cloud comes under threat due to hackers, and the most common attack on the cloud data is considered as the Distributed Denial of Service (DDoS) attack. This work has concentrated on detecting the DDoS attack by developing the deep learning-based classifier. The service request from the users is collected and grouped as the log information. From the log file, some important features are selected for the classification using the Bhattacharya distance measure to reduce the training time of the classifier. Here, Taylor-Elephant Herd Optimisation based Deep Belief Network (TEHO-DBN), is developed by modifying the Elephant Herd Optimisation (EHO) with the Taylor series and the algorithm thus developed is adopted to train the Deep Belief Network (DBN) for the DDoS attack detection. From the simulation results, it can be concluded that the proposed TEHO based DBN classifier has improved performance with a maximum accuracy of 0.830.
dc.format.extent33
dc.language.isoen
dc.publisherTaylor & Francis
dc.titleDetection of Distributed Denial of Service Attack in Cloud Computing Using the Optimization-Based Deep Networks
dc.typeArticle
Appears in Collections:Computer Science Engineering Department

Files in This Item:
File SizeFormat 
CSE-35.docx16.43 kBMicrosoft Word XMLView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.